The novel excitation system has several similarities with the well-known mechanical amplification produced by parametric excitation [1] and the mechanics of pumping a swing [2]. Our research features the development and analysis of a novel ocean wave energy converter (WEC). One class of ocean wave energy converter is a buoy, which is resonantly excited by the ocean waves. A novel excitation method is used with this class of converter in order to amplify its energy harvesting capabilities.

Aims of Research

Our research features the development and analysis of a novel ocean wave energy converter. The following issues associated with the excitation scheme will be addressed:

- Optimization of the design of the water intake system and prototype testing.
- Examination of stochastic excitation of models for the WEC.
- More realistic fluid-structure interaction models.
- Post-processing of results and field testing.
- Experiments are intended to examine the feasibility of the novel excitation method.

A Simple Model

The energy e of the oscillator is not a continuous function of time, and experiences a discontinuity when mass is added. For several steady state responses, this phenomenon is shown in the figures below. For further details, see [4].

The Dynamics of a Novel Ocean Wave Energy Converter

Preliminary work on the wave energy converter features a single degree-of-freedom hybrid system model with state-dependent switching [3].

Depending on damping δ, mass modulation μ, and dimensionless forcing frequency $\omega = \omega_F/\omega_0$, the system can exhibit limit cycles, bounded oscillations, and unbounded motions. A sample of these behaviors is shown in the figures below. For further details, see [4].

Prototype Design and Testing

We have performed preliminary experiments on the WEC. These experiments are intended to examine the feasibility of the novel excitation method.

Future Work

The following issues associated with the excitation scheme will be addressed:

- More realistic fluid-structure interaction models.
- Examination of stochastic excitation of models for the WEC.
- Optimization of the design of the water intake system and prototype testing.

Some preliminary work on stochastic excitation has been completed [5].

Acknowledgments and References

The work was partially supported by the National Science Foundation under Grant No. 1058888. Dr. Ehrlich is the Program Director.

